
View-Based Measure Columns

It's often useful to reference a rolled-up measure outside the context of the View that calculates

it; in other words, to turn a View-based measure into a real transaction-based measure that can

be accessed anywhere. And, because the View-based measure is dynamic, so also is the

transaction-based measure, allowing for advanced real-time modeling.

Here is a simple example. Let’s say you have a count of Vendor by Commodity inside a View,

like this::

Suppose you now want to further segment Commodity by a range on those Vendor counts – in

other words, Commodities with 2-3 Vendors, 3-6 Vendors, 6-10 Vendors, and so on. Like this:

In the general case, you would have to manually connect the count of Vendor by Commodity

back to your source data, for example by dumping it out and then reading it back in as a new

dataset. That has the disadvantage that you would need to perform this manual step on every

data refresh, or every time you wanted to modify the source View with amended counts (by

filtering it, for example). Of course, with Spendata you could build a script-only Column that

computes the result directly, and that would work for refresh. It wouldn’t respond to real-time

filtering, though, and it is difficult to construct.

That’s where View-based measure columns come in. We derive the new column right from the

View menu, like this:

We name the new measure and identify its source measure within the View:

And the measure is created. To build the final View above, we create a Range Column

based on the new vCount measure and then crosstab Range by Commodity. Note that

we use avg(vCount) inside the View, so that values will be meaningful for intermediate

nodes and not summed for leaf nodes.

Dynamic Filtering

Now for the fun part – filtering the source View. If we were to filter the View in which the

View-based measure column is defined, the following occurs:

1. The View is filtered.

2. The View-based measure column “vCount” is re-derived.

3. The Range column based on vCount is re-derived.

4. The crosstab of Range by Commodity is re-calculated.

So now we have a real-time mechanism for driving models dependent on the View-

based measure – an incredibly powerful capability.

For example, here we’ve filtered the source View by GL “Consulting”, illustrating the

cascading effects:

View Annotations

When a View is the source of one or more View-based measure columns, it is

annotated with a star. Mousing over the star provides a list of the names of the View-

based measure columns defined by the View.

Use cases

● Benchmarking against averages. For example, suppose we have # of FTE per Cost

Center. We can then do a comparison by cost center of their cost/FTE per commodity

vs the overall average for this commodity. Ditto for travel (flight cost), office supplies,

etc.

● Segment vendors into buckets based on the number of invoices (count of invoices by

vendor), or the number of POs.

● Range of spend by vendor, by channel. Is this channel low cost to operate? Or is each

invoice a separate piece of paper to process?

● Conveniently see if the spend in a particular View cell is the total spend for {vendor,

commodity, etc.}.

● Create a segmentation of vendors that are 1) not mapped; 2) partially mapped; or 3)

95% mapped.

Notes

1. The new vCount measure is meaningful only in Views or filters where Commodity

is involved. Using it without narrowing by Commodity means that you are pulling

vCount values from multiple Commodities, which is meaningless.

2. The new vCount measure must be divided by <count of transactions> to be

meaningful; otherwise it is summed by transaction. This can be done inside a

View with the Advanced Measure “average” function, or anywhere (such as in a

script-only Column) by explicit division by transaction count.

